상어 초등학교에는 교실이 하나 있고, 교실은 N×N 크기의 격자로 나타낼 수 있다. 학교에 다니는 학생의 수는 N2명이다. 오늘은 모든 학생의 자리를 정하는 날이다. 학생은 1번부터 N2번까지 번호가 매겨져 있고, (r, c)는 r행 c열을 의미한다. 교실의 가장 왼쪽 윗 칸은 (1, 1)이고, 가장 오른쪽 아랫 칸은 (N, N)이다.

선생님은 학생의 순서를 정했고, 각 학생이 좋아하는 학생 4명도 모두 조사했다. 이제 다음과 같은 규칙을 이용해 정해진 순서대로 학생의 자리를 정하려고 한다. 한 칸에는 학생 한 명의 자리만 있을 수 있고, |r1 - r2| + |c1 - c2| = 1을 만족하는 두 칸이 (r1, c1)과 (r2, c2)를 인접하다고 한다.

  1. 비어있는 칸 중에서 좋아하는 학생이 인접한 칸에 가장 많은 칸으로 자리를 정한다.
  2. 1을 만족하는 칸이 여러 개이면, 인접한 칸 중에서 비어있는 칸이 가장 많은 칸으로 자리를 정한다.
  3. 2를 만족하는 칸도 여러 개인 경우에는 행의 번호가 가장 작은 칸으로, 그러한 칸도 여러 개이면 열의 번호가 가장 작은 칸으로 자리를 정한다.

예를 들어, N = 3이고, 학생 N2명의 순서와 각 학생이 좋아하는 학생이 다음과 같은 경우를 생각해보자.

학생의 번호좋아하는 학생의 번호
4 2, 5, 1, 7
3 1, 9, 4, 5
9 8, 1, 2, 3
8 1, 9, 3, 4
7 2, 3, 4, 8
1 9, 2, 5, 7
6 5, 2, 3, 4
5 1, 9, 2, 8
2 9, 3, 1, 4

가장 먼저, 4번 학생의 자리를 정해야 한다. 현재 교실의 모든 칸은 빈 칸이다. 2번 조건에 의해 인접한 칸 중에서 비어있는 칸이 가장 많은 칸인 (2, 2)이 4번 학생의 자리가 된다.

     
  4  
     

다음 학생은 3번이다. 1번 조건을 만족하는 칸은 (1, 2), (2, 1), (2, 3), (3, 2) 이다. 이 칸은 모두 비어있는 인접한 칸이 2개이다. 따라서, 3번 조건에 의해 (1, 2)가 3번 학생의 자리가 된다.

  3  
  4  
     

다음은 9번 학생이다. 9번 학생이 좋아하는 학생의 번호는 8, 1, 2, 3이고, 이 중에 3은 자리에 앉아있다. 좋아하는 학생이 가장 많이 인접한 칸은 (1, 1), (1, 3)이다. 두 칸 모두 비어있는 인접한 칸이 1개이고, 행의 번호도 1이다. 따라서, 3번 조건에 의해 (1, 1)이 9번 학생의 자리가 된다.

9 3  
  4  
     

이번에 자리를 정할 학생은 8번 학생이다. (2, 1)이 8번 학생이 좋아하는 학생과 가장 많이 인접한 칸이기 때문에, 여기가 그 학생의 자리이다.

9 3  
8 4  
     

7번 학생의 자리를 정해보자. 1번 조건을 만족하는 칸은 (1, 3), (2, 3), (3, 1), (3, 2)로 총 4개가 있고, 비어있는 칸과 가장 많이 인접한 칸은 (2, 3), (3, 2)이다. 행의 번호가 작은 (2, 3)이 7번 학생의 자리가 된다.

9 3  
8 4 7
     

이런식으로 학생의 자리를 모두 정하면 다음과 같다.

9 3 2
8 4 7
5 6 1

이제 학생의 만족도를 구해야 한다. 학생의 만족도는 자리 배치가 모두 끝난 후에 구할 수 있다. 학생의 만족도를 구하려면 그 학생과 인접한 칸에 앉은 좋아하는 학생의 수를 구해야 한다. 그 값이 0이면 학생의 만족도는 0, 1이면 1, 2이면 10, 3이면 100, 4이면 1000이다.

학생의 만족도의 총 합을 구해보자.

입력

첫째 줄에 N이 주어진다. 둘째 줄부터 N2개의 줄에 학생의 번호와 그 학생이 좋아하는 학생 4명의 번호가 한 줄에 하나씩 선생님이 자리를 정할 순서대로 주어진다.

학생의 번호는 중복되지 않으며, 어떤 학생이 좋아하는 학생 4명은 모두 다른 학생으로 이루어져 있다. 입력으로 주어지는 학생의 번호, 좋아하는 학생의 번호는 N2보다 작거나 같은 자연수이다. 어떤 학생이 자기 자신을 좋아하는 경우는 없다.

출력

첫째 줄에 학생의 만족도의 총 합을 출력한다.

제한

  • 3 ≤ N ≤ 20

예제 입력 1 복사

3
4 2 5 1 7
3 1 9 4 5
9 8 1 2 3
8 1 9 3 4
7 2 3 4 8
1 9 2 5 7
6 5 2 3 4
5 1 9 2 8
2 9 3 1 4

예제 출력 1 복사

54

예제 입력 2 복사

3
4 2 5 1 7
2 1 9 4 5
5 8 1 4 3
1 2 9 3 4
7 2 3 4 8
9 8 4 5 7
6 5 2 3 4
8 4 9 2 1
3 9 2 1 4

예제 출력 2 복사

1053

 

교실 크기는 n * x
학생 수 n^2
1번부터 n^2까지 번호
(r행, c열)
맨위는 (1, 1) 오른쪽 아래 (n, n)
|r1 - r2| + |c1 - c2| = 1을 만족하는 두 칸이 (r1, c1)과 (r2, c2)를 인접
한칸에 한명만 앉음
비어있는 칸 중 좋아함

비어있는 칸 중에서 좋아하는 학생이 인접한 칸에 가장 많은 칸으로 자리

3                 <--- N * N 행렬
4 2 5 1 7         <--- 학생 번호, 좋아하는 사람1, 2, 3, 4
3 1 9 4 5
9 8 1 2 3
8 1 9 3 4
7 2 3 4 8
1 9 2 5 7
6 5 2 3 4
5 1 9 2 8
2 9 3 1 4

구현 로직 순서
1. 주어진 학생의 번호와 그 학생이 좋아하는 친구의 번호를 딕셔너리에 저장
2. 좋아하는 학생이 많은 칸으로 이동하려면 좋아하는 학생의 수가 담긴 변수 필요
3. 비어있는 칸이 가장 많은 칸으로 자리를 정하려면 비어있는 칸의 개수 필요
4. 공통적으로 칸의 정보가 담길 x, y 좌표도 필요

구현 참고
https://resilient-923.tistory.com/352

구현 아이디어
1. 입력을 받아서 딕셔너리 [me] = [좋아한는 친구 리스트 저장]
2. 딕셔너리 키와 아이템을 가지고 상하좌우가 비어있는지 개수 카운트, 좋아하는 친구가 있는지 개수 카운트

 

import sys
sys.stdin = open("백준_21608_상어초등학교.txt", "r")

n = int(input())
board = [[0 for _ in range(n)] for _ in range(n)]   #n*n 보드 생성
dx = [-1, 0, 1, 0]      #위, 오른쪽, 아래, 왼쪽
dy = [0, 1, 0, -1]
student_list = []
dict = {}

#student_list 입력 : 학생 번호 [0], 좋아하는 친구[1], [2], [3], [4]
#like_dic[나] = [내가 좋아하는 친구 리스트, , , ,]
for i in range(n*n) :
    student_list = list(map(int, input().split()))
    me = student_list[0]
    like = student_list[1:]
    dict[me] = like

#나와, 좋아하는 친구 딕셔너리 탐색
for me, like in dict.items() :
    temp = []
    #각 학생들에 대해서 board를 탐색하면서 자리 정보 temp에 저장
    for i in range(n) :
        for j in range(n) :
            emptyCount = 0           #비어있는 칸의 개수 카운트
            likeCount = 0           #좋아하는 친구가 근처에 있는 경우 카운트
            #만약 자리에 학생이 이미 배치되어있다면, 그 자리는 않힐수 없다.
            if board[i][j] != 0 :
                continue

            #4방향 확인해서 비어있는 자리와, 좋아하는 친구 카운트
            for d in range(4) :
                nextX = i + dx[d]
                nextY = j + dy[d]

                if nextX < 0 or nextX >= n or nextY < 0 or nextY >= n :
                    continue
            
                #자리가 비어있는 경우 자리 카운트 증가
                if board[nextX][nextY] == 0 :
                    emptyCount += 1
                
                #좋아하는 친구가 있는 경우 좋아하는 친구수 카운트 증가
                if board[nextX][nextY] in like :
                    likeCount += 1
            #좋아하는 친구 카운트[0], 비어있는 카운트[1], n*n board 중x좌표[2], y좌표[3]
            temp.append([likeCount, emptyCount, i, j])
    
    #자리정보 정렬
    #친구가 많고, 근처에 비어있는 카운트가 크고, x좌표가 빠르고, y좌표가 빠른 순서로 나를 배치한다.
    temp.sort(key = lambda x: (-x[0], -x[1], x[2], x[3]))   #친구 카운트가 큰 순, 비어있는 카운트가 큰순, x좌표가 빠른순, y좌표가 빠른 순
    print(temp)
    print(me)
    board[temp[0][2]][temp[0][3]] = me                      #입력 순서대로 좋은 곳에 me를 앉힌다.

#print(board)    #학생을 정해서 앉힌 board
result = 0

#만족도 구하기
#board를 돌면서 인접한 칸에 좋아하는 학생의 수를 구한다.
#그 값이 0이면 학생 만족도는 0
#1이면 1 / 2이면 10 / 3이면 100 / 4이면 10000
for i in range(n) :
    for j in range(n) : 
        amount = 0
        for d in range(4) :
            nextX = i + dx[d]
            nextY = j + dy[d]

            if nextX < 0 or nextX >= n or nextY < 0 or nextY >= n :
                continue

            #학생이 배치된 board의 시작점부터 학생 번호를 기준으로 4방향에 친구가 있는지 검사
            #친구가 있는 경우 amount 증가
            if board[nextX][nextY] in dict[board[i][j]] :       
                amount += 1
        
        #만족도를 갖고 합
        if amount == 0:
            result += 0
        elif amount == 1:
            result += 1
        else:
            result += 10 ** (amount-1)

print(result)
[백준 | 골드2] 21608_상어초등학교(구현)